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The compressibility factors and configuration energies of the Lennard- Jones pair-additive fluid 
were calculated in terms of the PY, HN C, HTA, ORPA, and EXP approximations, the Lado 
method and the method by Madden and Fitts. The results were compared with Monte Ca rlo data . 
In the gaseous region, the EXP approximation, the Lado method and the method by Madden 
and Fitts are substantially better than the remaining approaches. The last-mentioned method is 
the most successful. 

The aim of this work is to verify some up-to-date theories of simple fluids in a wide 
range of temperatures and densities . When testing them, we can bear in mind either 
the ability of theory to describe the system structure or its thermodynamic behaviour. 
The comparison of calculated radial distribution function (RDF) with simulated 
data is a direct test of structure. However, such a test is of little practicality for a large 
region of the temperature-density surface: Partly the reliable simulated data are not 
available in a sufficient extent, partly the results would be too extensive. We assume 
that a suitable indirect test of RDF is the comparison of the simulated compressibility 
factors, Z, with the values calculated from the pressure equation 

z = 1 + (21[/3) O/kT - g(r) r3 dr , f
ro du(r) 
o dr 

(1) 

where 0 = N/V is the number density, u(r) the pair potential and g(r) the radial 
distribution function . Eq. (1) is, as it is well-known, very sensitive to small inaccuracies 
of RDF. Even if a given theory fails in this test , it can still predict correctl} the thermo
dynamic properties of system if we use for their determination the less sensitive energy 
equation 

U/NkT = 21[o /kT f~ tI(r) g(r) 1'2 dt , (2) 

where U is the configuration internal energy. 

For testing in terms of Eqs (1) and (2), we chose the following approaches: Percus
- Yevick (PY) and hypernetted chain (HNC) approximations, perturbation methods 
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by Andersen, Chandler and Weeks - high temperature approximation (HTA), opti
mized random phase approximation (ORPA) and exponential approximation (EXP), 
and perturbation methods combined with the Orstein-Zernike relation - the Lado 
method (LADO), called sometimes also the renormalized HNC, and the method by 
Madden and Fitts. We chose the most usual model of simple fluid , i.e. the Len
nard-Jones potential 

tI(r) = 4e[(a/r)12 - (a/r)6] (3) 

and the pair additivity rule. The computations were carried out for reduced densities 
e = Na3/Vfrom 0 to 0·9 and reciprocal reduced temperatures 13 = e/kTfrom 0 to 1·3. 
The thermodynamic quantities z and U were calculated in the entire region with 
a step 0·05 for e and p. The complete tables of results are too extensive to be published 
and are available at authors on request. Only representative sample of results is given 
below. 

Theories Tested 

The Perclls-Yevick method 1 is based on an approximation of direct correlation 
function, c(r), by the relation 

e(r) = {exp [ - pu(r)] - 1} y(r) , (4) 
where 

y(r) = exp [pu(r)] g(r) (5) 

and on the Orstein-Zernike relation (OZ) between the direct and total correlation 
function her) = g(r) - 1 

fOCI fr+s 
her) = e(r) + 21tIl/r shes) te(t)dtds. 

o Ir-sl 
(6) 

The HNC method 2 combines the OZ relation with the approximation 

e(r) = {exp [-pu(r)] - I} y(r) + y(r) - 1 - In [y(r)]. (7) 

The simplest of the perturbation approaches developed by Andersen and coworkers 
is the high temperature approximation3 • The reference potential, uO(r), to potential (1) 
is defined by the relation 

(8) 
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The perturbation component of the potential, uP(r), is given by the equation 

(9) 

The radial distribution function is approximated by the same function for the reference 

sys tem 

(10) 

and the RDF of reference system is determined in terms of the blip function appro

ximation 

(11) 

where y~S is the y function of a system 01 hard spheres with diameteJ d. This diameter 

is obtained by solving the equation 

f~ y~S(,.) {exp [ - puDer)] - exp [ - pU~IS(/,)]} ,.2 dr = 0 . (12) 

The more elaborated approaches of the above-mentioned authors, the ORPA4 

and EXps, were proposed for potentials with hard core. When applying them to the 
Lennard-Jones potential, the radial distribution function of trial potential is deter

mined first 

(13) 

where uP is defined by Eq. (9), and the conversion to potential (1) is carried out in 

terms of the blip function approximation 

(14) 

The radial disttibution function of the trial system is in the ORPA given by the 
relation 

(15) 

and in the EXP approximation by 

(16) 

The quantity e(l') is a so-called renormalized potentials. 
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Lado6 stems from the genera l relation for the direct correlation function 

c(r) = {exp [-fJu(r)] - I} y(r) + y(r) - 1 - In [y(r)] + E{r), (17) 

where E(r) is the sum of elementary diagrams. On subtracting the analogous equation 
for the reference system, we have 

c(r) = cO(r) + h(r) -- hO(r) - In [y(r)/yO(r)] + 
+ E(r) - £O{I") . (I 8) 

In this relat ion, the approximation is then introduced 

E(r) = EO{r) (19) 

TABLE I 

Thermodynamic functions at reduced density 0·100 

Theory 
p ~ -~----.. -------~-.~-. ~ 

MC HNC py HTA MFI ORPA EXP LADO MF2 

Compressibility facto r 

0'1 1·11 0·00 0·00 - 0,01 - 0,01 0·00 000 0·00 0·00 
0'2 1·07 0·00 0·00 - 0'03 - 0,03 0·00 0·00 0·00 0·00 
0·3 1·01 0· 00 0·00 - 0,04 - -004 - 0,01 0·00 000 000 
0-4 0·95 0·00 0'00 - 0,05 - 0' 05 - 0,01 0·00 0·00 000 
0·5 0·89 0·00 0·00 - 0,06 - 0·06 - 0 02 000 0·00 000 
0·6 0-82 0·00 000 - 0,07 - 0-07 - 0-03 0-00 0·00 0-00 
0 '7 0-75 0·00 0-00 - 0-08 - 008 - 004 000 0·00 0·00 
0'8 0·67 0-00 0-00 - 0,08 - 0,08 - 0-05 0-01 0-00 000 

Interna l Energy 

0'1 - 0-04 0-00 0-00 0-00 0-00 0-00 000 000 0-00 
0·2 - 0'10 0- 00 0-00 000 0·00 0·00 0·00 0·00 000 
0-3 - 0'17 0- 00 000 0-02 0·02 0'00 000 0-00 0-00 
0-4 - 0-25 0-00 0-00 0- 03 003 000 0·00 0-00 0·00 
0-5 - 0-33 0-00 0·00 006 0-06 0-01 0'00 0-00 0·00 
0-6 - 0-43 0-00 0-00 0- 09 002 0·02 0·00 0-00 000 
0-7 - 0-53 0·00 0·00 0-13 0-13 0·04 000 0-00 000 
0·8 - 0'65 0·00 0'00 020 0·20 0-07 0-01 0-00 0·00 
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Jnd on inserting Eqs (18) and (19) into the OZ relation (6), the integral equation for 
the RDF is solved_ In this work we have applied the Lado method to the trial potential 

(13)- The RDF of the Lennard-Jones system was calculated in terms of Eq_ (14)-

Another combination of the perturbation approach with the OZ equation was 
proposed by Madden and Fitts 7 

(20) 

The radial distribution function of reference system is determined in an analogous 

way 

(21) 

T ABLE II 

Thermodynamic functions at reduced temperature 2-740 
------------.---

Theory 
- --- - ------------ ._-_._--_ .. - -

MC HNC PY HTA MFI ORPA EXP LADO MF2 

Compressibility factor 

D,] 0-97 000 000 -- 005 - 0-05 - 001 000 000 0'00 
02 099 000 0·00 - 0-08 - 0,09 -- 0,03 000 -- 0-01 - 0-01 

0'3 1-06 0·02 001 - 0·\0 - 0-]1 - 0,04 000 - 0-02 - 002 

0-4 1·21 0·07 002 -- 0·09 - 0'10 - 004 000 - 0,04 - 003 

0·5 0'48 0,]6 0·04 - 003 - 0,06 - 0,01 000 --- 0·03 - 0,03 

0·6 ] ,90 0-33 007 0·09 0·02 007 004 002 - 0,01 

0·7 2'57 0·60 008 0·26 0·13 0·21 0' 10 0'11 0·04 

0·8 3·60 0·94 001 0·46 0·23 0'38 0·18 0'25 0·07 

09 5· 15 ]'32 - 0,23 064 0·23 O' 55 0'24 0'40 005 

Internal energy 

0'1 -0,22 0·00 0·00 002 0·02 001 0·00 0'00 0·00 

0'2 - 0'44 0·00 0·00 003 0·03 0·00 0·00 000 000 

0'3 - 0,65 0·00 0·00 003 0·03 0·00 000 0·00 000 

0'4 - 0,86 0·00 0·00 0·02 0·02 0·00 --- 0,01 0·00 -0,01 

0-5 -1,07 0·02 0·00 0·02 0-02 0-00 - 0,01 0·00 0·00 

0'6 -1 -26 004 0·00 002 0'02 0·00 - 0,01 0'00 0·00 

0·7 - 1,43 0·08 000 0'04 0·03 002 0·00 0·00 0·00 

0·8 -I -56 0·15 -0-01 0-06 0-04 0-05 0-02 0-03 0-00 

09 -HI 0-24 -0-05 0-09 0·05 0-08 0·04 0-05 0·00 
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The subscripts HNC and PY denote the functions obtained in terms of t~e HNC and 
PY approximations . Potential (8) was again chosen as the reference potential. 

Eg . (21) is an alternative approach to the blip function approximation (11). By 
combining Egs (10) and (21), we get a method analogous to the HTA. The given 
approach will be denoted by MFI whereas the procedure employing Egs (20) and 
(21) will be denoted by MF2. 

A brief survey of methods used has been given in foregoing paragraph . Some 
technical and numerical details of their solutions are given in Appendix. 

RESULTS AND DISCUSSION 

In the region of low densities we can judge theories a priori according to their ability 
to describe lower virial coefficients. The PY and HNC yield exact second (B2) and 

TABLE III 

Thermodynamic functions at reduced density 0,650 

Theory 
p 

MC HNC PY HTA MFI ORPA EXP LADO MF2 

Compressibility factor 

0,1 2·55 0·27 0·03 0·14 0·08 0·13 0·12 &12 0·07 
0·2 2,56 0·34 0·01 0·13 0'06 0·12 0·09 0·09 0·03 
0,3 2·38 0,40 0·03 0·14 006 0'11 0'06 0·05 0·00 
0·4 2·11 0·46 0·09 0,16 0·07 0· 12 0·05 0·04 - 0,01 
0·5 1·76 0·54 0·18 0' 19 0,10 0,15 0·05 0·03 0·00 
0·6 1,38 0,61 0·29 0'23 0·13 0'17 0·04 0·03 0·01 
0·7 0,98 0·67 0'40 0'25 0·15 0,18 0,03 -0,01 001 
0·8 0,58 0·71 0·51 0·25 0·15 0·18 0·00 - 0,04 -0,01 

0 ·9 0·18 0·73 0·62 0·24 0·13 0·15 -006 - 0,09 -0'04 

Internal energy 

0·1 - 0,07 -0,01 - 0,06 -004 -0,05 -004 - 004 - 0,04 -005 
0·2 - 0'55 003 - 0·02 0,00 0·00 0·00 - 0,01 - 001 -0,02 

0'3 - 1,04 0·06 0·00 0·03 002 0·01 0·00 0·01 0·00 
0·4 - 1'53 0·07 0·01 0·04 0·04 0·02 0·00 0·00 000 
0 ·5 - 2·02 0·07 0·01 0·05 0·05 0,02 - 0,01 001 0·00 
0·6 - 2'52 0·07 0·02 0·06 0·06 0·03 - 0,01 0·01 000 
0·7 '- 3,02 0·07 002 0·07 0·07 0·03 - 0,02 0·01 -0,01 
0·8 - 3,52 0·06 0·02 0·08 0,08 003 - 0'04 0·00 -0,02 
0·9 - 4,03 0·06 0·03 0' 10 0'10 0·03 -005 0·00 - 0-03 
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third (B3) virial coefficients. It is possible to show easily that the same holds for the 
MF2 and Lado methods. The exponential approximation leads on ly to the correct 
value of B2 and the ORPA yields the correct value of B2 in the limit p -t O. The 
HT A and MFI methods approximate the vi rial coefficients in terms of the reference 

system B2 = B~ and B3 = B~. 
The compressibi lity factors obtained from the first five virial coefficients for the 

Lennard- lones potentialS are compared in Table I with the results of theories tes ted 
at a reduced density equal 0·1. Here and in subsequent tables, the deviation of cal-
culated value fro m "exact" data is a lways presented in the column of respective theo ry_ 

TABLE IV 

Thermodynamic functions at reduced density 0·750 

Theory 

fi ------------.------- ---_ .... _--

MC HNC py HTA MF I ORPA EXP LADO MF2 
-----_.-._--- --_ .- ..... _---_ ... • ----

Compressibil ity factor 

0·1 3-11 0·40 000 0·21 0·1 1 0·20 0· 18 0·18 0·09 

0'2 3·29 0'53 -0,04 0·24 0-10 0·21 0· 14 0' 15 0·05 

0'3 3·20 0·64 -0'02 0·28 0'13 0·23 0· )2 0·13 0·03 

OA 2·97 0-77 0'06 0·35 0·18 0·28 0·10 0·15 0·03 

0'5 2·65 0·90 0'18 0·43 0'18 0·33 0·09 0·10 0·05 

0'6 2·28 1·02 0·32 0·50 0 '31 0·39 0·08 0 16 0·06 

0'7 1·88 1' 13 OA8 0·57 0·37 OA3 0·05 0·19 0·06 

0·8 J-47 1·22 0·64 0·62 0'4 1 0-46 0'0 1 0·08 0'05 

0'9 1·04 0·29 081 0·66 OA5 0-48 -0'04 008 0·04 

1·0 0·58 1·37 1·01 0·71 0-49 0'5 1 - 0,09 0 '07 0·02 

1'1 0·08 1-47 1·25 0·78 0'56 0·56 - 0·)2 005 0·04 

Internal energy 

0'1 0·00 -0,03 -0,10 -006 - 0,08 - 0,07 - 007 - 0,07 - 0,08 

0'2 -0'56 005 -0,05 000 - 0,02 - 0'01 - 0,02 - 0,02 - 0,03 

0'3 - 1'13 0-10 - 0,02 003 0·02 0·02 0·00 0·01 - 0'01 

OA - 1' 71 0·13 0·01 0·06 0·05 0·04 002 0·02 0·01 

0'5 - 2,28 0· 14 0·01 0·07 0·06 0·04 0·01 0·02 0·01 

0·6 -2,86 0·15 0·03 0·08 0·07 0·05 0·01 0-02 0·00 

0'7 - 3-45 0·1 6 004 0·09 0·09 0·06 0·01 0·02 0·01 

0'8 - 4,04 0·17 0·06 0·10 0·10 0·06 0·00 0·02 0·00 

0'9 - 4,63 0·17 0·07 0·11 0·11 0'06 0·00 0·02 - 0'01 

1'0 ~ 5'23 0' 18 0·09 0·13 0·13 0·07 0·00 0·02 - 001 

1'1 - 5'83 0'18 0·10 0·14 0·15 0·08 -0-01 0·01 - 0,01 
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Further, the configuration internal energies are compared in Table 1. The PY, HNC, 
LADO, and MF2 approaches are in perfect agreement with exact values. Li~ewise 
good results are yielded also by the EXP approximation, which gives evidence that 
the value of B 3 , and to a certain extent, B4 , too, is close to the true value. As it can 
be expected, the results of HTA, ORPA and MFI get worse with increasing p. 

TABLE V 

Thermodynamic functions at reduced density 0·850 
._ -_ ...• __ ._--------- -.--.--~---,-----

Theory 
p ---

MC HNC PY HTA MFI ORPA EXP LADO MF2 
--_ .. _--_ •. _-----_._---

Compressibility Factor 

0·1 3·80 0·59 - 0·04 0·34 0,)7 0·33 0·29 0'30 0·15 
0'2 4·26 0·78 - 0·14 039 o· )S 0·35 0·25 0·27 0·08 
0'3 4'38 0·95 - 0·16 0·45 0·)7 0-38 0·19 0·21 003 
0'4 4·31 1·14 -0- 10 0·54 0-22 0044 0·15 0-28 0-02 
0·5 4-11 1-34 0-02 0-65 0·30 0·53 0·12 0·26 0-04 
0·6 3-83 I-54 019 0-77 0040 0·62 0·09 0·33 0-06 
0·7 3-49 1-73 0·38 0·88 0-50 0·70 0·05 033 0-08 
0-8 3-12 1-90 0-60 1-00 0-59 0-79 0-01 0·27 0·09 
0-9 2-72 2-07 0-84 I-II 0-68 0-86 -0-05 --'0-2.1 0·10 
)-0 2-29 2-22 1-1[ 1-21 0-77 0·94 -0- 11 0-28 0-10 
[ - ) 1-84 2-37 1-40 \-32 0·86 [-04 -0-)7 0·35 0-11 
1·2 1-37 2-52 1-72 \-43 0·96 1·09 -0-24 0-4\ 0-12 
1-3 0-87 2-68 2-07 I-54 1-06 1·)7 -0'29 0·07 0-13 

Internal energy 

0-\ 0-08 - 0-01 -0-14 -0-07 - 0-09 -0-07 - 0-05 - 004 - 0-29 
0-2 - 0-54 0·10 - 0-08 0-02 - 0-01 001 - 0-01 - 0-01 - 0-03 
0·3 --- \ -)7 0-16 - 0,05 0-05 0-02 004 0-01 0-02 - 00\ 
0·4 - 1-81 0-20 - 003 0-07 0-04 006 002 0-03 0-00 
0-5 - 2046 0-23 -002 0-09 0-06 006 002 0-03 0-00 
06 - 3-12 0-25 000 0-10 0·08 0-07 0-02 0-03 0-00 
0·7 - 3-78 0-27 0·02 0·11 009 0-08 0-02 0-02 0-00 
0·8 - 4-46 0-30 0-05 0-13 0-11 0-09 003 0-04 0-00 
0-9 -5-13 0-31 0-07 0-13 0-12 0-09 0-03 0-03 -0-0\ 
1-0 - S-81 0-32 0·10 0-14 0-14 0-10 0-04 0-02 -0-01 
I-I - 6-50 0-35 0·]3 0-16 0-16 0-11 0-06 0·03 -001 
1-2 -7- 19 0-36 0·)7 0-18 0-18 0-13 0-07 0-02 -0-01 
1-3 - 7-88 0-38 0-20 0-]9 0-19 0-14 0-09 0·07 -0-01 
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Behaviour of the theories at higher temperatures was tested along the trad itional 
isotherm kT/c = 2·74. The smoothed Monte Carlo data'l are compared in Table II 
with the calculated values of z and U/NkT. The best results are yielded by the MF2. 
Surprisingly good is the PY approximation, whereas the HNC fails at higher densities. 
The EXP and LADO methods are very good as well, the former being somewhat 
better. The HT A and MFllead to analogous results at low densities, at higher densities 
MFl is substantialJy better and comparable with EXP and LADO. The ORPA is 
only slightly better than the HT A. As it may be expected, the energy equation leads, 
fOl all the methods, to conspicuously better results than the pressure equation. 

The region of dense gas and liquid was tested along the isochores Q = 0'65, 0'75 
and 0·85. The results are presented in Tables HI - VI. It follows from the comparison 
with the smoothed Monte Carlo data 10

-
12 that the theories can be divided into 

TABLE VI 

Thermodynamic functions at reduced temperature 1·350 
+-----,--"--.~-------.--.-.. --.--------,--

Theory 
---------"--- -

MC HNC PY HTA MFI ORPA EXP LADO MF2 

Compressibility Factor 

0'1 0·72 0·00 0·00 - 0,08 - 0,08 - 0'05 0·00 0·00 0·00 

0'2 0'50 0·01 0·01 - 0'l7 - 0,17 - 0,10 0·01 - 0,01 - 0,01 

0·3 0·35 0·05 0·05 -0-24 - 0'24 - 0-14 0-01 - 0-03 - 0-01 

0-4 0-27 0-11 0·11 - 0-24 - 0-25 - 0-14 - 0'01 - 0-07 - 0-02 

0-5 0-31 0-25 0-22 -0·]2 - 0-15 - 0-08 - 0-01 - 0-09 - 0-04 

0-6 0-55 0-51 0-38 0-11 0-05 0-08 0-01 - 0-05 - 0'01 
0·7 1-16 0-94 0-54 0-45 0-31 0-34 0·06 0-06 0-06 

0·8 2-39 I-50 -0-09 0-80 0·51 0-62 0·07 0-21 0-11 
0-9 4-63 2-07 0·23 0-97 0-42 0-77 - 0-09 0-49 - 0-06 

Internal energy 

0-1 - 0-58 0-00 000 0-16 0-16 005 0-01 0-00 000 
0'2 -1-10 -005 -003 0·22 0-22 006 - 0,01 - 0-01 -0-03 

0'3 -I-56 -0-08 - 0-05 0·19 0-19 0-03 - 0-05 - 0,02 -0-05 
0-4 -2-02 -005 -0-03 014 o 14 0-02 - 0,06 - 0,01 -0-02 
0-5 -2-50 0-00 -0·01 0-10 0·10 0-03 - 005 0-00 001 
0-6 -2-98 0-04 0-01 0-08 0-08 0·02 -0-04 O'OJ 006 
0'7 -3-47 0-12 0-04 0-09 0-09 0-05 0-00 0-02 0-16 
0-8 -3-89 0-22 0-05 0-10 0-09 0-07 0-01 0-03 0-27 
0-9 -4-19 0-35 0-01 0-13 0-10 0-09 0-03 0-04 0-37 
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three groups according to their success. The best ones are the Mf2, EXP, LADO (in 
the given order), then the Mfl, ORPA and HTA approaches, and the worst are the 
PY and HNC. A similar picture OCCUlS with internal energy, but the differences are 
not so conspicuous. 

The theories are compaled on the critica l isotherm of the Lennard-Jone:, fluid , 
fJ = 1/1 '35. The agreement with the simulated data 13 is here better than in the liquid 
region, the relative order of success of theories is similar. Only the PY approximation 
is here better than the HT A, M Fl and 0 RP A. 

On the whole it is possible to say that the classical PY and HNC approximations 
describe well the structure only a t low densities. Analogously to the hard sphere 
system, the Percus-Yevick method is bettel. Therefore it can be used to calculate 
thermodynamic quantities in terms ot the energy function as it has been stated before 
by Barker and Henderson 14. 

The HT A approximation is popular with regard to its numerical unpretentiousness. 
However, it is not suitable for describing structure. The values ot internal energy are 
not as well too good even at high temperatures. Similar case occurs when calculating 
thelmodynamic functions in terms of the perturbation expression for the Helmholtz 
energyl5. The main reason of failure is apparently the blip function approximation 
for the Mfl yields at higher densities substantially better results. 

The ORPA method is likewise demanding as the substantially better EXP appro
ximation. Therefore the ORPA does not seem to be significant for simple fluids. 

The MF2, LADO and EXP methods proved to be most successful. From the three 
approaches mentioned, the most accurate is the Madden-Fitts method. At- the same 
time it is, however, the most time-consuming. Three integral equations are namely 
solved in it. The exponential approximation is numerically least laborious and at the 
same time rather better than the Lado method. We assume that this methoci is the 
most suitable one for simple fluids. 

APPENDIX 

In this Appendix, the most important numerical details of solution of the methods tested are 
summarized. 

The methods based on solution of integral equations (PY, HNC, MFI, MF2) were solved by 
direct iteration l6

. The Simpson rule with interval ill" = 0040- and maximum distance rmax = Sa 
was used for the integration . The iterations were finished at the maximum relative error in functio n 
y(r) lower than 0'0001. The maximum error of the compressibility factors is lower than 0·005 and 
for the reduced internal energy is lower than 0·002. (An exception is only an immediate vicinit y 
of the critical point , where the error may be as much as several times higher.) 

To solve all the perturbation theories, first it is necessary to define density of the hard sphere 
reference system. Through all the work, the uniform way was used of choosing the hard sphere 
diameter in terms of the blip function approximation (12). The properties of the hard sphere 
system were then calculated by means of the recently reported 17 parametrization of Monte Carlo 
data. 
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The ORPA and EXP methods were adapted for solution by introducing the function 

H(r) = C(r) + "P(r) /kT. (22) 

Eqs (/5) and (16) can then be rewritten ea ~i l y into the forms 

yT(r) = [y~1S(r) + H(r) - ,,1'(r ) /kT] exp ["P(r) /kT] , (23) 

or 

(24) 

respec tively. These equations are, owing to the continuity or function s y(r) and H(r), substa ntially 
numerically more adva ntageous. Besides, the problems with extrapolating the function yT(r) 

for r < d do not take place. 
To solve the iteration Lado method, which is really too much time-consuming, a new numerical 

procedure was elaborated. Its detailed description can be found elsewhere 18
. 

The HT A, ORPA, EXP and Lado methods require the numerical three-d imensional Fourier 
transformation. The reversible Lado procedure 19 with the parameters /l,.r = 0'02a and r lll ax = 6a 
was employed. The iterations were finished for mean relative error in y(r) lower than 0·0005. 
The uncertainty of results obtained grew with the complexity of method used. Whereas the maxi
mum error of the HTA was lower than 0·005 and 0·001 for z and U/ NkT, respectively, for the 
Lado method reached up to 0'03 and 0,05, respectively. The errors mentioned are, however, 
attained only for the highest densities and very low temperatures. In most calculations, however, 
they are substantially lower. The numerical inaccuracy of results is therefore considerably lower 
than the errors of individual theories and uncertainty of Monte Carlo data and is sufficient for 
tes ting the theori es. 
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